ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Anthony Birri, Christian M. Petrie, Thomas E. Blue
Nuclear Technology | Volume 207 | Number 12 | December 2021 | Pages 1865-1872
Technical Paper | doi.org/10.1080/00295450.2020.1844532
Articles are hosted by Taylor and Francis Online.
This paper describes the parametric analysis of an optical fiber–based gamma thermometer (OFBGT) that is intended to be used to infer the power distribution in the Ohio State University Research Reactor (OSURR). The OFBGT measures the radial temperature difference between an optical fiber that is within the thermal mass and an optical fiber that is within the capillary tube that is attached to the exterior of the outer sheath of the OFBGT. This gas gap acts as a thermal resistance to volumetric gamma heating of the OFBGT thermal mass. Of the six that are analyzed, one is deemed most appropriate for operation in the OSURR Central Irradiation Facility. This design produces a maximum of ~50°C at full reactor power (450 kW). A comparison of the six OFBGT designs generally shows how modifications of the design that increase suffer from decreased spatial resolution.