ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Anthony Birri, Christian M. Petrie, Thomas E. Blue
Nuclear Technology | Volume 207 | Number 12 | December 2021 | Pages 1865-1872
Technical Paper | doi.org/10.1080/00295450.2020.1844532
Articles are hosted by Taylor and Francis Online.
This paper describes the parametric analysis of an optical fiber–based gamma thermometer (OFBGT) that is intended to be used to infer the power distribution in the Ohio State University Research Reactor (OSURR). The OFBGT measures the radial temperature difference between an optical fiber that is within the thermal mass and an optical fiber that is within the capillary tube that is attached to the exterior of the outer sheath of the OFBGT. This gas gap acts as a thermal resistance to volumetric gamma heating of the OFBGT thermal mass. Of the six that are analyzed, one is deemed most appropriate for operation in the OSURR Central Irradiation Facility. This design produces a maximum of ~50°C at full reactor power (450 kW). A comparison of the six OFBGT designs generally shows how modifications of the design that increase suffer from decreased spatial resolution.