ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Yang Hong Jung, Hee Moon Kim
Nuclear Technology | Volume 207 | Number 12 | December 2021 | Pages 1842-1850
Technical Paper | doi.org/10.1080/00295450.2020.1845057
Articles are hosted by Taylor and Francis Online.
This study characterizes a failed discharged fuel rod with 53 000 MWd/tonne U from a nuclear power plant in Korea. Chalk River Unidentified Deposits (CRUD) and the oxide layer were observed using an electron probe micro-analyzer (EPMA, SX-50 R, CAMECA, France) with wavelength dispersive (X-ray) spectroscopy. A normally irradiated cladding specimen was analyzed for comparison with the failed fuel rod. The analysis revealed an oxide layer with a thickness of about 10 μm and double-stratified agglomerates of CRUD species shapes. In contrast, sound fuel rods irradiated under conditions similar to failed fuel showed clusters in which Fe, Ni, and Cr were distributed. The main elements constituting the CRUD material, notably Ni and Fe, were located in the same position. Moreover, the thickness of the oxidized layer of the failed fuel rod was found to be significantly different from the thickness of the sound fuel rod.
Consequently, EPMA techniques offer the possibility of identifying and analyzing the CRUD phases and segregations in spent pressurized water reactor fuel. Although phases and segregations are small in terms of the amount expected to be present in background radiation, they nevertheless present a significant analytical challenge.