ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Trump picks former N.Y. congressman for NNSA administrator
Williams
President Trump has selected Brandon Williams to head the Department of Energy’s National Nuclear Security Administration, pending confirmation by the U.S. Senate.
Williams is a former one-term congressman (R., N.Y.),from 2023 to the beginning of 2025. Prior to political office he served in the U.S. Navy. Williams’s run for office gained attention in 2022 when he defeated fellow navy veteran Francis Conole, a Democrat, but he lost the seat last November to Democrat John Mannion.
“I will be honored to lead the tremendous scientific and engineering talent at NNSA,” Williams said, thanking Trump, according to WSYR-TV in Syracuse, N.Y.
Swaminathan Vaidyanathan
Nuclear Technology | Volume 207 | Number 12 | December 2021 | Pages 1793-1809
Technical Paper | doi.org/10.1080/00295450.2020.1846987
Articles are hosted by Taylor and Francis Online.
Although η, the number of neutrons released per neutron absorbed in a 232Th-233U (thorium) fuel cycle, is greater than 2 in the thermal spectrum and therefore the possibility of breeding in a water-moderated reactor exists, it has been found difficult to achieve in practice. It is useful to relax the constraint for breeding and examine a thorium cycle for pressurized water reactors PWRs, denoted as PWR-Th, with the provision that the shortfall be made up by 233U bred in a PWR operating on a uranium fuel cycle, denoted as PWR-U, both of which utilize bimetallic thorium-zirconium alloy cladding as part of the fuel rod design. The number of complementary PWRs that could be sustainably operated on a thorium cycle was seen to critically depend on the moderator-to-fuel ratio (MF). Detailed cycle-by-cycle analysis shows that at the end of the first cycle, the sustainability ratio, namely, the ratio of sustainable PWR-Th reactors to PWR-U reactors, is 1.07 at an MF of 1.91, 1.4 at an MF of 1.43, and 4.45 at an MF of 0.954. The shortfall in 233U was found to decrease continually in subsequent cycles with the sustainability ratio increasing to 1.45, 2.01, and 28.3 at the respective MF values of 1.91, 1.43, and 0.954 by the 25th cycle. Although the sustainability ratio increases with lower MF, the achievable discharge exposure decreases necessitating larger material throughput in reprocessing. Detailed evaluations for fuel thermal, mechanical performance and nuclear reactivity feedback parameters require a further narrowing of potential design parameters based on holistic considerations arising from reprocessing. The PWR-Th reactors generate only trace amounts of transuranic (TRU) waste, and combined with a PWR-U design with bimetallic thorium cladding that generates only a fourth of the TRU waste compared to the standard all-UO2 fuel cycle, a significant reduction in TRU waste is possible.