ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Jung Hwan Kim, Chul Min Kim, Yong Hee Lee, Man-Sung Yim
Nuclear Technology | Volume 207 | Number 11 | November 2021 | Pages 1753-1767
Regular Technical Paper | doi.org/10.1080/00295450.2020.1837583
Articles are hosted by Taylor and Francis Online.
The safe operation of a nuclear power plant (NPP) can be guaranteed through the team effort of operators in the main control room (MCR). Among the various features, peer checks, concurrent verification, independent verification, and communication reconfirmation are major contributors to effective operations in the MCR. In the digital MCR environment of advanced NPPs, there are potential emerging issues of concern related to these contributors resulting from the use of PC-soft controls for reactor operations. The objective of this study is to investigate the development of quantitative indicators for estimating the implicit intentions of reactor operators as a way to mitigate such concerns. The proposed quantitative indicators support peer checks and concurrent/independent verifications for diagnosing and preventing human errors through communication enhancement in a digital technology-based MCR. A machine learning–based algorithm was used to classify two implicit intentions of agreement and disagreement. The classification was based on electroencephalography data measured from human subjects while they performed mock operational tasks using soft controls. The mock operational tasks were based on using a Windows-based nuclear plant performance analyzer (Win-NPA). Statistical analysis was performed on the measured data to identify significant differences between the agreement and disagreement judgments by the operators. An average classification accuracy of 72% was achieved by using a support vector machine classifier for the Win-NPA task with a low number of features across the various Brodmann areas. The methodology proposed in this study may also serve to enhance communications in conventional MCRs for human error minimization.