ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Xiong Gao, Jamie B. Coble, A. C. Hines, Belle R. Upadhyaya, J. Wesley Hines
Nuclear Technology | Volume 207 | Number 11 | November 2021 | Pages 1725-1745
Regular Technical Paper | doi.org/10.1080/00295450.2020.1831873
Articles are hosted by Taylor and Francis Online.
Nuclear power plants (NPPs) require accurate measurement of mass flow rates. Advanced flowmeters have been widely applied in several current industries; however, the operating environment in NPPs is especially harsh because of high temperature, high radiation, and extremely corrosive conditions. Several of the advanced reactor designs, such as liquid sodium pool reactors and integral small modular reactors, do not have conventional primary piping systems. These designs require an alternative method to accurately measure primary flow. Cross-correlation function (CCF) flow estimation can estimate the flow velocity indirectly without any specific instruments for flow measurement. The target flow rate is derived by the delay time between two sensors located near each other along the flow direction. Temperature sensors are a common choice for this function because they are reliable, economical, and widely used in various industries. The delay time is inferred by applying the CCF to the signals collected from two or more sensors. CCF flow estimation can be performed in any structure of the flow region, not limited to pipes. One challenge for the CCF flow estimation is that the accuracy of the flow measurement is mainly determined by the inherent local process variation, which is small compared to the uncorrelated noise. To differentiate the process variations from the uncorrelated noise, this paper demonstrates periodic fluid injection of a different temperature before the sensors to amplify common process variation. The feasibility and accuracy of this method have been investigated through a physical flow loop experiment designed to verify the CCF flow estimation using fluid injection. Several parameters must be selected when designing the fluid injection CCF measurement system, such as the distance between the fluid injection site and the sensors, the injection period, and the injection flow rate. A series of tests was conducted to investigate whether these parameters were related to the accuracy of the CCF flow estimation and to identify appropriate values for these parameters for different flow regimes. The results show that the fluid injection method improves the flow measurement performance, and the appropriate design of flow injection and measurement geometry produces better flow characterization performance over a range of flow rates.