ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Trump picks former N.Y. congressman for NNSA administrator
Williams
President Trump has selected Brandon Williams to head the Department of Energy’s National Nuclear Security Administration, pending confirmation by the U.S. Senate.
Williams is a former one-term congressman (R., N.Y.),from 2023 to the beginning of 2025. Prior to political office he served in the U.S. Navy. Williams’s run for office gained attention in 2022 when he defeated fellow navy veteran Francis Conole, a Democrat, but he lost the seat last November to Democrat John Mannion.
“I will be honored to lead the tremendous scientific and engineering talent at NNSA,” Williams said, thanking Trump, according to WSYR-TV in Syracuse, N.Y.
Somayajulu L. N. Dhulipala, Chandrakanth Bolisetti, Richard Yorg, Philip Hashimoto, Justin L. Coleman, Mark Cox
Nuclear Technology | Volume 207 | Number 11 | November 2021 | Pages 1712-1724
Technical Note – Special section on the Seismic Analysis and Risk Assessment of Nuclear Facilities | doi.org/10.1080/00295450.2020.1792743
Articles are hosted by Taylor and Francis Online.
Following U.S. Department of Energy Order 420.1 C for the mitigation of natural phenomena hazards, such as earthquakes, to nuclear facilities through periodic reassessments, Idaho National Laboratory (INL) has developed the Seismic Hazard Periodic Re-Evaluation Methodology (SHPRM). The SHPRM involves seven criteria that evaluate changes to the seismic hazard at a site due to changes in the input models/data over time. Should these changes to the seismic hazard result in an increase in the design or licensing-basis ground motion of the facility from that which the facility was designed for, the SHPRM includes a criterion for reevaluating the facility risk objectives. While the criteria corresponding to the reevaluation of the seismic hazard and the design basis have been previously demonstrated and published, there is currently no guidance on reevaluating seismic risk for the purpose of SHPRM. This paper complements the published reports and papers on the application of SHPRM by demonstrating the risk objectives criterion for a generic nuclear facility (GNF), thereby closing the loop on the application of the SHPRM. The GNF is assumed to be located at the INL site and designated as a Seismic Design Category-3 facility as per American Society of Civil Engineers (ASCE)/Structural Engineering Institute (SEI) 43-05. The demonstration includes a risk assessment for a baseline seismic hazard calculated in 2006 and an updated seismic hazard calculated in 2015. After presenting the baseline and the updated seismic hazard curves at this site, the state-of-practice methodology for calculating fragility functions for the facility is presented, along with the fragilities calculated for the GNF. Employing a fault tree analysis using the INL in-house seismic analysis and risk assessment software MASTODON, the seismic risks of collapse of the GNF for the baseline and updated seismic hazards are computed to be 5.27E−05 and 5.2E−06, respectively. The results show that not only the reevaluated seismic risk is smaller, but more importantly, that it meets the risk objectives set by ASCE/SEI 43-05.