ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Chandrakanth Bolisetti, Justin Coleman, William Hoffman, Andrew Whittaker
Nuclear Technology | Volume 207 | Number 11 | November 2021 | Pages 1687-1711
Technical Paper – Special section on the Seismic Analysis and Risk Assessment of Nuclear Facilities | doi.org/10.1080/00295450.2021.1932175
Articles are hosted by Taylor and Francis Online.
Seismic analysis, design, and qualification of systems, structures, and components (SSCs) is a significant contributor to the capital cost of a nuclear power plant. To reduce capital costs of advanced nuclear power plants and make commercial nuclear energy more competitive, innovations are needed in their structural design and construction, and not just in the reactor core and associated systems. Seismic isolation has been identified as an important cost-cutting technology that enables standardization of equipment across various sites. This paper develops and demonstrates a cost- and risk-based seismic design optimization of a representative safety system in a nuclear power plant with the dual goals of minimizing overnight capital cost and meeting safety goals. The design optimization can also include component seismic isolation, in which case, the optimized design includes a set of equipment that needs to be seismically isolated to minimize capital cost. The open-source codes MASTODON and Dakota are used for seismic probabilistic risk assessment and design optimization, respectively. A generic nuclear facility with a safety system comprising SSCs that are common to nuclear power plants is considered for the demonstration of the design optimization and is assumed to be located at the Idaho National Laboratory site. Generic costs and seismic design cost functions are assumed for the SSCs of the safety system. The sum of the costs of the SSCs is minimized in the optimization process, while the risk of failure of the safety system is provided as a constraint. Results show that the optimization process reduces capital costs significantly while automatically prioritizing the safety of SSCs that contribute most to the risk of the safety system.