ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Efe G. Kurt, Robert Spears
Nuclear Technology | Volume 207 | Number 11 | November 2021 | Pages 1664-1686
Technical Paper – Special section on the Seismic Analysis and Risk Assessment of Nuclear Facilities | doi.org/10.1080/00295450.2020.1843952
Articles are hosted by Taylor and Francis Online.
The U.S. Nuclear Regulatory Commission’s functional containment concept provides advanced nuclear power plant designers with more flexibility in terms of the civil/structural design if the appropriate set of barriers for prevention of radioactive material release exist. Some of the conceptual advanced reactor structures, without the traditional pressure boundaries of large containment structures, are proposed to be deeply embedded or buried into soil. This approach is expected to provide (1) lesser seismic demands on the structures and safety-critical structures, (2) eased regulatory efforts and overall design against other external hazards such as aircraft impact, and (3) overall cost savings. One of the important aspects of assessing the technical and economic viability of deeply embedding advanced reactor buildings is to assess the seismic performance with the understanding of effects with material and geometric nonlinearities. This study investigates the seismic response of deeply embedded or buried advanced reactors by conducting three-dimensional nonlinear soil-structure interaction analyses. Although the results indicate that there is a general trend of decreased seismic response with increased embedment depths, the change in the dynamic environment with different embedment depths and the nonlinear environment under high-intensity seismic inputs may result in increased peak response at increased embedment depths.