ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Efe G. Kurt, Robert Spears
Nuclear Technology | Volume 207 | Number 11 | November 2021 | Pages 1664-1686
Technical Paper – Special section on the Seismic Analysis and Risk Assessment of Nuclear Facilities | doi.org/10.1080/00295450.2020.1843952
Articles are hosted by Taylor and Francis Online.
The U.S. Nuclear Regulatory Commission’s functional containment concept provides advanced nuclear power plant designers with more flexibility in terms of the civil/structural design if the appropriate set of barriers for prevention of radioactive material release exist. Some of the conceptual advanced reactor structures, without the traditional pressure boundaries of large containment structures, are proposed to be deeply embedded or buried into soil. This approach is expected to provide (1) lesser seismic demands on the structures and safety-critical structures, (2) eased regulatory efforts and overall design against other external hazards such as aircraft impact, and (3) overall cost savings. One of the important aspects of assessing the technical and economic viability of deeply embedding advanced reactor buildings is to assess the seismic performance with the understanding of effects with material and geometric nonlinearities. This study investigates the seismic response of deeply embedded or buried advanced reactors by conducting three-dimensional nonlinear soil-structure interaction analyses. Although the results indicate that there is a general trend of decreased seismic response with increased embedment depths, the change in the dynamic environment with different embedment depths and the nonlinear environment under high-intensity seismic inputs may result in increased peak response at increased embedment depths.