ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Trump picks former N.Y. congressman for NNSA administrator
Williams
President Trump has selected Brandon Williams to head the Department of Energy’s National Nuclear Security Administration, pending confirmation by the U.S. Senate.
Williams is a former one-term congressman (R., N.Y.),from 2023 to the beginning of 2025. Prior to political office he served in the U.S. Navy. Williams’s run for office gained attention in 2022 when he defeated fellow navy veteran Francis Conole, a Democrat, but he lost the seat last November to Democrat John Mannion.
“I will be honored to lead the tremendous scientific and engineering talent at NNSA,” Williams said, thanking Trump, according to WSYR-TV in Syracuse, N.Y.
Stéphanie Tillement, Frédéric Garcias
Nuclear Technology | Volume 207 | Number 9 | September 2021 | Pages 1291-1311
Technical Paper | doi.org/10.1080/00295450.2020.1868892
Articles are hosted by Taylor and Francis Online.
Very few papers exist in the field of social sciences that follow and study nuclear infrastructure design projects from the inside. Such a perspective would make it possible to understand the mechanisms of their successes or difficulties at their very origin. At a time when high hopes are placed on civil nuclear energy to solve the climate issue, but when simultaneously, nuclear industry actors are facing major difficulties in a great number of flagship projects, this situated understanding of any given project’s trajectory becomes crucially important. This paper proposes an analysis, from the inside, of a project that, about ten years ago, raised great expectations from both the French and global nuclear industry, but which, in 2019, was finally halted. This project is that of a so-called fourth generation sodium reactor: the Advanced Sodium Technological Reactor for Industrial Demonstration (ASTRID). ASTRID was a new sodium-cooled fast reactor. Begun in 2010, the project’s development was suspended at the end of 2019 by the French authorities. Through an inductive study of the project in the making, conducted from 2015 to 2019, the research team was able to follow the project trajectory and carry out nearly 30 interviews with actors directly involved in the project itself. By studying ASTRID as an infrastructure development project and building on the concepts of scale and infrastructure from the literature, the ASTRID project’s halt can be understood. The project’s suspension was the result of the increasing complexity and ambiguity faced by project members and stakeholders in aligning the local and global scales as the new infrastructure was developed, and more precisely, the ASTRID project infrastructure and the global nuclear infrastructure. Our analyses show that ASTRID’s trajectory gradually drifted as a result of three misalignments between the project’s infrastructure and the global nuclear infrastructure: a temporal, social, and physical misalignment. As a result, the project identity can be described as having been vague and ambiguous. This paper sets out how such a lack of clarity impacted design practices, the project organization as a whole, and the ASTRID trajectory. In consequence, it is crucially important that lessons are learned from the project’s cessation to understand both the difficulties related to the nuclear renaissance and in terms of the field of project management in general.