ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Pola Lydia Lagari, Styliani Pantopoulou, Miltos Alamaniotis, Lefteri H. Tsoukalas
Nuclear Technology | Volume 207 | Number 8 | August 2021 | Pages 1270-1279
Technical Paper | doi.org/10.1080/00295450.2020.1816743
Articles are hosted by Taylor and Francis Online.
Since radionuclides have unique characteristic gamma-ray spectra, usually maintained as a set of (energy, counts/energy) ordered pairs, an explicit functional representation would be indisputably useful. In this paper, the Gamma Detector Response and Analysis Software has been used to simulate the gamma-ray spectra as it would be collected by an NaI detector for a set of 70 radionuclides. Gaussian radial basis function (RBF) networks that offer simple, closed-form expressions are then trained to represent each of these spectra. Hence, a library consisting of 70 RBF networks for the corresponding radionuclides has been built. The presence of these library-contained radionuclides in a given gamma-ray spectrum of an unknown source is identified by an algorithm that employs a linear combination of the library spectra to approximate the unknown spectrum. The combination coefficients are then determined by minimizing the squared deviation error function under convexity constraints.