ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Pola Lydia Lagari, Styliani Pantopoulou, Miltos Alamaniotis, Lefteri H. Tsoukalas
Nuclear Technology | Volume 207 | Number 8 | August 2021 | Pages 1270-1279
Technical Paper | doi.org/10.1080/00295450.2020.1816743
Articles are hosted by Taylor and Francis Online.
Since radionuclides have unique characteristic gamma-ray spectra, usually maintained as a set of (energy, counts/energy) ordered pairs, an explicit functional representation would be indisputably useful. In this paper, the Gamma Detector Response and Analysis Software has been used to simulate the gamma-ray spectra as it would be collected by an NaI detector for a set of 70 radionuclides. Gaussian radial basis function (RBF) networks that offer simple, closed-form expressions are then trained to represent each of these spectra. Hence, a library consisting of 70 RBF networks for the corresponding radionuclides has been built. The presence of these library-contained radionuclides in a given gamma-ray spectrum of an unknown source is identified by an algorithm that employs a linear combination of the library spectra to approximate the unknown spectrum. The combination coefficients are then determined by minimizing the squared deviation error function under convexity constraints.