ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
A. Nava-Dominguez, S. Liu, T. Beuthe, B. P. Bromley, A. V. Colton
Nuclear Technology | Volume 207 | Number 8 | August 2021 | Pages 1216-1236
Technical Paper | doi.org/10.1080/00295450.2020.1813463
Articles are hosted by Taylor and Francis Online.
The use of advanced uranium-based and thorium-based fuel bundles in a 700-MW(electric)–class pressure tube heavy water reactor (PT-HWR) has the potential for improved performance characteristics with higher burnup, higher fissile fuel utilization, and lower coolant void reactivity while also extracting the energy potential in thorium. In this study, thermal-hydraulic subchannel analyses were performed for a single, high-power (6.5 MW), 12-bundle fuel channel at typical reactor operating conditions for 14 different PT-HWR lattice/core concepts using various types of advanced uranium-based and thorium-based fuels in 37-element and 35-element fuel bundle design concepts. Fuel bundle radial power distributions for fresh fuel at zero burnup were used in the thermal-hydraulic calculations, as a bounding case, along with axial power distributions that are representative of those that may be found in a high-power fuel channel in a PT-HWR core at near-equilibrium refueling conditions. The fuel bundle radial power distributions and fuel channel axial power distributions were determined from previous lattice physics and core physics studies. Based on the subchannel thermal-hydraulic analyses, the LC-05b/CC-04 BUNDLE-37-mod concept and the LC-12b/CC-08 BUNDLE-35 concept are recommended as the best candidates for further full-core system thermal-hydraulic transient analyses, based on critical heat flux and void fraction performance factors. BUNDLE-37 concept LC-01/CC-00 is also recommended as the reference case for future analysis.