ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Arvind Sundaram, Hany Abdel-Khalik
Nuclear Technology | Volume 207 | Number 8 | August 2021 | Pages 1163-1181
Technical Paper | doi.org/10.1080/00295450.2020.1812349
Articles are hosted by Taylor and Francis Online.
Can predictive models develop cognizance or awareness of how they have been used? Can models detect if they are being manipulated or executed in nonauthorized manners? Can a software track information propagation through its subroutines to improve execution efficiency? Can this be achieved in a covert manner, i.e., avoiding the use of additional variables, additional lines of code, and conventional logging files, and instead rely directly on the physics being simulated to develop the required cognizance? Achieving these goals under the looming threat of insiders is considered an open challenging problem. This paper introduces a new modeling paradigm to covertly develop cognizance that is of critical value when predictive software is used in both adversarial and nonadversarial settings. Given the wide range of applications possible with this new modeling paradigm, the paper will focus on introducing the mathematical theory and limit the initial demonstration to a physics-based model of a nuclear reactor. This model describes a representative industrial control system of a nuclear reactor model containing two coupled subsystems: a heat-producing core and a steam generator. The goal is to demonstrate how each subsystem physics model can remain cognizant of the state of the subsystem. The proposed methodology will provide communication solutions for future reactor technologies to enable advanced reactor control and remote reactor operations.