ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Arvind Sundaram, Hany Abdel-Khalik
Nuclear Technology | Volume 207 | Number 8 | August 2021 | Pages 1163-1181
Technical Paper | doi.org/10.1080/00295450.2020.1812349
Articles are hosted by Taylor and Francis Online.
Can predictive models develop cognizance or awareness of how they have been used? Can models detect if they are being manipulated or executed in nonauthorized manners? Can a software track information propagation through its subroutines to improve execution efficiency? Can this be achieved in a covert manner, i.e., avoiding the use of additional variables, additional lines of code, and conventional logging files, and instead rely directly on the physics being simulated to develop the required cognizance? Achieving these goals under the looming threat of insiders is considered an open challenging problem. This paper introduces a new modeling paradigm to covertly develop cognizance that is of critical value when predictive software is used in both adversarial and nonadversarial settings. Given the wide range of applications possible with this new modeling paradigm, the paper will focus on introducing the mathematical theory and limit the initial demonstration to a physics-based model of a nuclear reactor. This model describes a representative industrial control system of a nuclear reactor model containing two coupled subsystems: a heat-producing core and a steam generator. The goal is to demonstrate how each subsystem physics model can remain cognizant of the state of the subsystem. The proposed methodology will provide communication solutions for future reactor technologies to enable advanced reactor control and remote reactor operations.