ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Trump picks former N.Y. congressman for NNSA administrator
Williams
President Trump has selected Brandon Williams to head the Department of Energy’s National Nuclear Security Administration, pending confirmation by the U.S. Senate.
Williams is a former one-term congressman (R., N.Y.),from 2023 to the beginning of 2025. Prior to political office he served in the U.S. Navy. Williams’s run for office gained attention in 2022 when he defeated fellow navy veteran Francis Conole, a Democrat, but he lost the seat last November to Democrat John Mannion.
“I will be honored to lead the tremendous scientific and engineering talent at NNSA,” Williams said, thanking Trump, according to WSYR-TV in Syracuse, N.Y.
Elia Merzari, Haomin Yuan, Misun Min, Dillon Shaver, Ronald Rahaman, Patrick Shriwise, Paul Romano, Alberto Talamo, Yu-Hsiang Lan, Derek Gaston, Richard Martineau, Paul Fischer, Yassin Hassan
Nuclear Technology | Volume 207 | Number 7 | July 2021 | Pages 1118-1141
Technical Paper | doi.org/10.1080/00295450.2020.1824471
Articles are hosted by Taylor and Francis Online.
This paper demonstrates a multiphysics solver for pebble-bed reactors, in particular, for Berkeley’s pebble-bed -fluoride-salt-cooled high-temperature reactor (PB-FHR) (Mark I design). The FHR is a class of advanced nuclear reactors that combines the robust coated particle fuel form from high-temperature gas-cooled reactors, the direct reactor auxiliary cooling system passive decay removal of liquid-metal fast reactors, and the transparent, high-volumetric heat capacitance liquid-fluoride salt working fluids (e.g., FLiBe) from molten salt reactors. This fuel and coolant combination enables FHRs to operate in a high-temperature, low-pressure design space that has beneficial safety and economic implications. The PB-FHR relies on a pebble-bed approach, and pebble-bed reactors are, in a sense, the poster child for multiscale analysis.
Relying heavily on the MultiApp capability of the Multiphysics Object-Oriented Simulation Environment (MOOSE), we have developed Cardinal, a new platform for lower-length-scale simulation of pebble-bed cores. The lower-length-scale simulator comprises three physics: neutronics (OpenMC), thermal fluids (Nek5000/NekRS), and fuel performance (BISON). Cardinal tightly couples all three physics and leverages advances in MOOSE, such as the MultiApp system and the concept of MOOSE-wrapped applications. Moreover, Cardinal can utilize graphics processing units for accelerating solutions. In this paper, we discuss the development of Cardinal and the verification and validation and demonstration simulations.