ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
Swetha Veeraraghavan, Chandrakanth Bolisetti, Andrew Slaughter, Justin Coleman, Somayajulu Dhulipala, William Hoffman, Kyungtae Kim, Efe Kurt, Robert Spears, Lynn Munday
Nuclear Technology | Volume 207 | Number 7 | July 2021 | Pages 1073-1095
Technical Paper | doi.org/10.1080/00295450.2020.1807282
Articles are hosted by Taylor and Francis Online.
Seismic analysis and risk assessment of safety-critical infrastructure like hospitals, nuclear power plants, dams, and facilities handling radioactive materials involve computationally intensive numerical models and coupled multiphysics scenarios. They are also performed in a strict regulatory environment that requires high software quality assurance standards, and in the case of safety-related nuclear facilities, a conformance to the American Society of Mechanical Engineers Nuclear Quality Assurance (NQA-1) standard. This paper introduces the open-source finite-element software, MASTODON (Multi-hazard Analysis of Stochastic Time-Domain Phenomena), which implements state-of-the-art seismic analysis and risk assessment tools in a quality-controlled environment. MASTODON is built on MOOSE (Multi-physics Object-Oriented Simulation Environment), which is a highly parallelizable, NQA-1 conforming, coupled multiphysics, finite-element framework developed at Idaho National Laboratory. MASTODON is capable of fault rupture and source-to-site wave propagation using the domain reduction method, nonlinear site response, and soil-structure interaction analysis, implicit and explicit time integration, automated stochastic simulations, and seismic probabilistic risk assessment. When coupled with other MOOSE applications, MASTODON can also solve strongly and weakly coupled multiphysics problems. This paper presents a summary of the capabilities of MASTODON and some demonstrative examples.