ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Swetha Veeraraghavan, Chandrakanth Bolisetti, Andrew Slaughter, Justin Coleman, Somayajulu Dhulipala, William Hoffman, Kyungtae Kim, Efe Kurt, Robert Spears, Lynn Munday
Nuclear Technology | Volume 207 | Number 7 | July 2021 | Pages 1073-1095
Technical Paper | doi.org/10.1080/00295450.2020.1807282
Articles are hosted by Taylor and Francis Online.
Seismic analysis and risk assessment of safety-critical infrastructure like hospitals, nuclear power plants, dams, and facilities handling radioactive materials involve computationally intensive numerical models and coupled multiphysics scenarios. They are also performed in a strict regulatory environment that requires high software quality assurance standards, and in the case of safety-related nuclear facilities, a conformance to the American Society of Mechanical Engineers Nuclear Quality Assurance (NQA-1) standard. This paper introduces the open-source finite-element software, MASTODON (Multi-hazard Analysis of Stochastic Time-Domain Phenomena), which implements state-of-the-art seismic analysis and risk assessment tools in a quality-controlled environment. MASTODON is built on MOOSE (Multi-physics Object-Oriented Simulation Environment), which is a highly parallelizable, NQA-1 conforming, coupled multiphysics, finite-element framework developed at Idaho National Laboratory. MASTODON is capable of fault rupture and source-to-site wave propagation using the domain reduction method, nonlinear site response, and soil-structure interaction analysis, implicit and explicit time integration, automated stochastic simulations, and seismic probabilistic risk assessment. When coupled with other MOOSE applications, MASTODON can also solve strongly and weakly coupled multiphysics problems. This paper presents a summary of the capabilities of MASTODON and some demonstrative examples.