ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Yaqi Wang, Sebastian Schunert, Javier Ortensi, Vincent Laboure, Mark DeHart, Zachary Prince, Fande Kong, Jackson Harter, Paolo Balestra, Frederick Gleicher
Nuclear Technology | Volume 207 | Number 7 | July 2021 | Pages 1047-1072
Technical Paper | doi.org/10.1080/00295450.2020.1843348
Articles are hosted by Taylor and Francis Online.
Advanced reactor concepts span the spectrum from heat pipe–cooled microreactors, through thermal and fast molten-salt reactors, to gas- and salt-cooled pebble bed reactors. The modeling and simulation of each of these reactor types comes with their own geometrical complexities and multiphysics challenges. However, the common theme for all nuclear reactors is the necessity to be able to accurately predict neutron distribution in the presence of multiphysics feedback. We argue that the current standards of modeling and simulation, which couple single-physics, single-reactor-focused codes via ad hoc methods, are not sufficiently flexible to address the challenges of modeling and simulation for advanced reactors. In this work, we present the Multiphysics Object Oriented Simulation Environment (MOOSE)–based radiation transport application Rattlesnake. The use of Rattlesnake for the modeling and simulation of nuclear reactors represents a paradigm shift away from makeshift data exchange methods, as it is developed based on the MOOSE platform with its very natural form of shared data distribution. Rattlesnake is well equipped for addressing the geometric and multiphysics challenges of advanced reactor concepts because it is a flexible finite element tool that leverages the multiphysics capabilities inherent in MOOSE. This paper focuses on the concept and design of Rattlesnake. We also demonstrate the capabilities and performance of Rattlesnake with a set of problems including a microreactor, a molten-salt reactor, a pebble bed reactor, the Advanced Test Reactor at the Idaho National Laboratory, and two benchmarks: a multiphysics version of the C5G7 benchmark and the LRA benchmark.