ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
A. J. Novak, R. W. Carlsen, S. Schunert, P. Balestra, D. Reger, R. N. Slaybaugh, R. C. Martineau
Nuclear Technology | Volume 207 | Number 7 | July 2021 | Pages 1015-1046
Technical Paper | doi.org/10.1080/00295450.2020.1825307
Articles are hosted by Taylor and Francis Online.
This paper presents an overview of Pronghorn, a multiscale thermal-hydraulic (T/H) application developed by Idaho National Laboratory and the University of California, Berkeley. Pronghorn, built on the open-source finite element Multiphysics Object-Oriented Simulation Environment (MOOSE), leverages state-of-the-art physical models, numerical methods, and nonlinear solvers to deliver fast-running advanced reactor T/H simulation capabilities within a modern software engineering environment. This work summarizes the physical models, multiphysics and multiscale coupling, and numerical discretization in Pronghorn with emphasis on our initial target application to pebble bed reactors (PBRs). A diverse set of applications are shown to depressurized natural circulation in the SANA experiments, forced convection in the Pebble Bed Modular Reactor, three-dimensional (3-D)/one-dimensional coupling of Pronghorn and RELAP-7 systems T/H for loop analysis in the High Temperature Reactor Power Module, and forced convection in the Mark-1 Pebble Bed Fluoride-Salt-Cooled High-Temperature Reactor. A multiphysics coupling of Pronghorn, RELAP-7, and Griffin deterministic neutronics for a gas-cooled PBR demonstrates the capability of the MOOSE framework for reactor design calculations. These applications highlight the verification and validation underlying Pronghorn’s software development while emphasizing features that improve upon capabilities offered by legacy tools in areas such as 3-D unstructured meshing, physics modeling, and multiphysics coupling.