ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Marina Sessim, Michael R. Tonks
Nuclear Technology | Volume 207 | Number 7 | July 2021 | Pages 1004-1014
Technical Paper | doi.org/10.1080/00295450.2021.1910005
Articles are hosted by Taylor and Francis Online.
Nuclear thermal propulsion (NTP) provides a consistent source of thrust for long space missions. However, fuel development for NTP reactors is a major technological hurdle. Existing modeling and simulation tools developed by the U.S. Nuclear Engineering Advanced Modeling and Simulation (NEAMS) program for power reactors can be leveraged to help accelerate the fuel development. This work is a preliminary demonstration of the application of NEAMS tools to model NTP fuel. Specifically, the fuel performance tool BISON and the mesoscale reactor materials tool MARMOT are used to develop a multiscale model of thermal transport in a W-UO2 CERMET fuel element for NTP reactors. Three-dimensional simulations in MARMOT are used to estimate the effective thermal conductivity (ETC) of fresh CERMET fuel at temperatures ranging from 1500 K to 3000 K. The ETC values from MARMOT are then used in BISON simulations that predict the steady-state temperature profile throughout a 61-subchannel hexagonal fuel element. The temperature varies by 83 K throughout the fuel element, with the highest temperature occurring near the outer edges of the element. BISON is also used to show that the temperature profile in prototype fuel elements with fewer subchannels does not vary significantly from that in the 61-subchannel element.