ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Richard L. Williamson, Jason D. Hales, Stephen R. Novascone, Giovanni Pastore, Kyle A. Gamble, Benjamin W. Spencer, Wen Jiang, Stephanie A. Pitts, Albert Casagranda, Daniel Schwen, Adam X. Zabriskie, Aysenur Toptan, Russell Gardner, Christoper Matthews, Wenfeng Liu, Hailong Chen
Nuclear Technology | Volume 207 | Number 7 | July 2021 | Pages 954-980
Technical Paper | doi.org/10.1080/00295450.2020.1836940
Articles are hosted by Taylor and Francis Online.
BISON is a nuclear fuel performance application built using the Multiphysics Object-Oriented Simulation Environment (MOOSE) finite element library. One of its major goals is to have a great amount of flexibility in how it is used, including in the types of fuel it can analyze, the geometry of the fuel being modeled, the modeling approach employed, and the dimensionality and size of the models. Fuel forms that can be modeled include standard light water reactor fuel, emerging light water reactor fuels, tri-structural isotropic fuel particles, and metallic fuels. BISON is a platform for research in nuclear fuel performance modeling while simultaneously serving as a tool for the analysis of nuclear fuel designs. Recent research in BISON includes techniques such as the extended finite element method for fuel cracking, exploration of high-burnup light water reactor fuel behavior, swelling behavior of metallic fuels, and central void formation in mixed-oxide fuel. BISON includes integrated documentation for each of its capabilities, follows rigorous software quality assurance procedures, and has a growing set of rigorous verification and validation tests.