ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Alexander Lindsay, Roy Stogner, Derek Gaston, Daniel Schwen, Christopher Matthews, Wen Jiang, Larry K. Aagesen, Robert Carlsen, Fande Kong, Andrew Slaughter, Cody Permann, Richard Martineau
Nuclear Technology | Volume 207 | Number 7 | July 2021 | Pages 905-922
Technical Paper | doi.org/10.1080/00295450.2020.1838877
Articles are hosted by Taylor and Francis Online.
Efficient solution via Newton’s method of nonlinear systems of equations requires an accurate representation of the Jacobian, corresponding to the derivatives of the component residual equations with respect to the degrees of freedom. In practice these systems of equations often arise from spatial discretization of partial differential equations used to model physical phenomena. These equations may involve domain motion or material equations that are complex functions of the systems’ degrees of freedom. Computing the Jacobian by hand in these situations is arduous and prone to error. Finite difference approximations of the Jacobian or its action are prone to truncation error, especially in multiphysics settings. Symbolic differentiation packages may be used, but often result in an excessive number of terms in realistic model scenarios. An alternative to symbolic and numerical differentiation is automatic differentiation (AD), which propagates derivatives with every elementary operation of a computer program, corresponding to continual application of the chain rule. Automatic differentiation offers the guarantee of an exact Jacobian at a relatively small overhead cost. In this work, we outline the adoption of AD in the Multiphysics Object Oriented Simulation Environment (MOOSE) via the MetaPhysicL package. We describe the application of MOOSE’s AD capability to several sets of physics that were previously infeasible to model via hand-coded or Jacobian-free simulation techniques, including arbitrary Lagrangian-Eulerian and level-set simulations of laser melt pools, phase-field simulations with free energies provided through neural networks, and metallic nuclear fuel simulations that require inner Newton loop calculation of nonlinear material properties.