ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Troy Howe, Steve Howe, Jack Miller
Nuclear Technology | Volume 207 | Number 6 | June 2021 | Pages 866-875
Technical Note | doi.org/10.1080/00295450.2020.1832814
Articles are hosted by Taylor and Francis Online.
The space industry is expanding at an increasing rate. While most efforts are currently focused on Earth and lunar orbits, it is only a matter of time before affordable exploration missions into deep space become more prevalent. Nuclear electric propulsion (NEP) with large quantities of power have been theorized for such missions with many advantages over traditional solar panels and radioisotope power sources. Key among NEP issues has been the power conversion system, often falling upon dynamic cycles over solid-state options like thermoelectric generators (TEGs) because of low efficiencies. Howe Industries has conceptualized a deep space probe capable of transporting cube satellites (CubeSats) and other payloads to deep space utilizing NEP based on an advanced TEG power conversion system with efficiencies that would challenge traditional dynamic power conversion cycles. Experimentation at a TRIGA research reactor has shown a potential for 20 to 50 times increase in electrical conductivity of potential thermoelectric materials, which would correlate to large increases in efficiencies over traditional TEGs.