ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Francisco I. Valentín, Gregory Daines
Nuclear Technology | Volume 207 | Number 6 | June 2021 | Pages 801-814
Technical Paper | doi.org/10.1080/00295450.2020.1826271
Articles are hosted by Taylor and Francis Online.
Creare is developing a miniature, low-power, free-piston energy conversion system. Our converter is designed to transform thermal energy from radioisotope heater units into on-demand electricity essential to space exploration probes, unmanned surface rovers, small landers, small satellites, and similar small-scale systems operating in darkness. We have achieved a simple system design with a single moving part that requires no recuperator and no regenerators or valves. Our converter technology promises a high-efficiency system in an extremely compact enclosure. This work describes preliminary design, analysis, and testing efforts for our miniaturized converter. We fabricated a laboratory-scale prototype and acquired experimental data at prototypical temperatures to validate our performance models. Our numerical model was able to accurately predict converter losses. In doing so, we also demonstrated the feasibility of our novel thermodynamic cycle through the generation of net positive pressure-volume work of the system at its design temperature (~873 K). These results have been used to guide subsequent converter design modifications. Future work includes the fabrication, testing, and detailed performance assessment of a complete prototype converter.