ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Corporate powerhouses join pledge to triple nuclear energy by 2050
Following in the steps of an international push to expand nuclear power capacity, a group of powerhouse corporations signed and announced a pledge today to support the goal of at least tripling global nuclear capacity by 2050.
David I. Poston, Marc A. Gibson, Patrick R. McClure, Rene G. Sanchez
Nuclear Technology | Volume 206 | Number 1 | June 2020 | Pages 78-88
Technical Paper – Kilopower/KRUSTY special issue | doi.org/10.1080/00295450.2020.1727287
Articles are hosted by Taylor and Francis Online.
The Kilowatt Reactor Using Stirling TechnologY (KRUSTY) was a prototypic nuclear-powered test of a 5-kW(thermal) Kilopower space reactor. This paper presents results from the KRUSTY warm critical experiments, which were completed prior to the final system test. The first set of criticals comprised cold or zero-power criticals; i.e., the core was not heated by fission power. These were followed by three warm criticals, where fission power heated the core to 200°C, 300°C, and 450°C, respectively. These criticals provided the data, confidence, and regulatory framework that were needed to proceed with the KRUSTY nuclear system test. The criticals also provided valuable data for the benchmarking of codes applicable to all nuclear systems. Finally, a comparison of KRUSTY results to pretest predictions is provided, and overall, the models matched the experimental results very closely.