ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Patrick R. McClure, David I. Poston, Steven D. Clement, Louis Restrepo, Robert Miller, Manny Negrete
Nuclear Technology | Volume 206 | Number 1 | June 2020 | Pages 43-55
Technical Paper – Kilopower/KRUSTY special issue | doi.org/10.1080/00295450.2020.1722544
Articles are hosted by Taylor and Francis Online.
The centerpiece of the Kilopower Project, i.e., the Kilowatt Reactor Using Stirling TechnologY (KRUSTY) test, consists of the development and testing of a ground technology demonstration of a small fission power system based on a 1-kW(electric) space science power requirement. The KRUSTY test was authorized by the U.S. Department of Energy’s (DOE’s) National Nuclear Security Administration Nevada Field Office. Authorization was obtained by adding an amendment to the existing regulatory documents for the National Criticality Experiments Research Center to cover the KRUSTY experiment. This amendment was reviewed and approved by the DOE. The most important safety question for the experiment was the addition of over 2 $ of excess reactivity to the reactor system. This amount of excess reactivity meant that the analyst could postulate accidents where the reactor went prompt critical, leading to physical shock or melting of the fuel. This paper analyzes these accidents using computer calculations and examines the controls used to mitigate them. The estimation of the impacts both on accident progression and consequences of reactivity insertion events was a significant part of obtaining approval for the KRUSTY experiment. The regulatory approval of KRUSTY was one of the first to be obtained for a completely new reactor concept in many decades.