ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Trump picks former N.Y. congressman for NNSA administrator
Williams
President Trump has selected Brandon Williams to head the Department of Energy’s National Nuclear Security Administration, pending confirmation by the U.S. Senate.
Williams is a former one-term congressman (R., N.Y.),from 2023 to the beginning of 2025. Prior to political office he served in the U.S. Navy. Williams’s run for office gained attention in 2022 when he defeated fellow navy veteran Francis Conole, a Democrat, but he lost the seat last November to Democrat John Mannion.
“I will be honored to lead the tremendous scientific and engineering talent at NNSA,” Williams said, thanking Trump, according to WSYR-TV in Syracuse, N.Y.
Edward Lum, Chad L. Pope
Nuclear Technology | Volume 207 | Number 5 | May 2021 | Pages 761-770
Technical Paper | doi.org/10.1080/00295450.2020.1794190
Articles are hosted by Taylor and Francis Online.
This paper discusses a new method of simulating the fuel assembly duct-bowing reactivity coefficient for EBR-II run 138B. Quantification of the fuel assembly duct-bowing reactivity effect in liquid metal–cooled fast reactors has been a persistent problem since they were first designed and operated. Simulation of the duct-bowing reactivity effect is difficult because the level of detail required to simulate the effect has exceeded most modeling capabilities. The new method outlined in this paper utilizes the finite element analysis code ANSYS to analyze the thermal and structural components. The displacement of the fuel assembly duct due to thermal expansion and mechanical interaction was calculated by ANSYS using recorded EBR-II run 138B temperature and power boundary value data. The displacement values were incorporated into to a Monte Carlo model of EBR-II run 138B and keff was calculated. Multiple Monte Carlo calculations were performed with duct displacement values corresponding to different reactor temperatures. Using the calculated keff values associated with the different duct displacement results allowed calculation of the duct-bowing reactivity coefficient. The duct-bowing reactivity coefficient was calculated to be −14.5 × 10−4 $/°C/ ± 4.4%.