ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Qiang Huang, Jin Jiang
Nuclear Technology | Volume 207 | Number 5 | May 2021 | Pages 711-725
Technical Paper | doi.org/10.1080/00295450.2020.1794436
Articles are hosted by Taylor and Francis Online.
One of the most important considerations in the design of electronic systems for post-accident monitoring in a nuclear power plant is how to deal with the complex and uncertain radiation environments. Without using special design methodologies and adequate protection, nonradiation-hardened commercial-off-the-shelf (COTS) electronic components can easily be damaged. In this paper, a new design methodology is proposed so that COTS components can be used in building post-accident monitoring systems (PAMSs). To validate the effectiveness of the methodology, a prototype wireless post-accident monitoring system has been designed, implemented, and evaluated in a 60Co gamma radiation environment. It has been concluded that even at a dose rate of 20 krad (Si)/h, the prototype system operates satisfactorily even after being irradiated for 21 h. The system also operates satisfactorily at a low dose rate of 200 rad (Si)/h. It can be concluded that, even with COTS components, the proposed design can effectively extend the lifespan of post-accident monitoring systems in different radiation environments. Based on the experimental results, it can be said with confidence that the developed radiation-tolerant wireless monitoring system can operate for at least 8 h under the highest observed dose rate (530 Sv/h) encountered during the Fukushima Daiichi nuclear disaster and would have been able to provide crucial information to first responders following the accident.