ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Cihang Lu, Zeyun Wu, Xu Wu
Nuclear Technology | Volume 207 | Number 5 | May 2021 | Pages 692-710
Technical Paper | doi.org/10.1080/00295450.2020.1805259
Articles are hosted by Taylor and Francis Online.
Thermal stratification (TS) is a thermal-fluid phenomenon that can introduce large uncertainties to nuclear reactor safety. The stratified layers caused by TS can lead to temperature oscillations in the reactor core. They can also result in damages to both the reactor vessel and in-vessel components due to the growth of thermal fatigue cracks. More importantly, TS can impede the establishment of natural circulation, which is widely used for passive cooling and ensures the inherent safety of numerous reactor designs. A fast-running one-dimensional (1-D) model was recently developed in our research group to predict the TS phenomenon in pool-type sodium-cooled fast reactors. The efficient 1-D model provided reasonable temperature predictions for the test conditions investigated, but nonnegligible discrepancies between the 1-D predictions and the experimental temperature measurements were observed. These discrepancies are attributed to the model uncertainties (also known as model bias or errors) in the 1-D model and the parameter uncertainties in the input parameters.
In this study, we first recognized through a forward uncertainty analysis that the observed discrepancies between the computational predictions and the experimental temperature measurements could not be explained solely by input uncertainty propagation. We then performed an inverse uncertainty quantification (UQ) study to reduce the model uncertainties of the 1-D model using a modular Bayesian approach based on experimental data. Inverse UQ serves as a data assimilation process to simultaneously minimize the mismatches between the predictions and experimental measurements, while quantifying the associated parameter uncertainties. The solutions of the modular Bayesian approach were in the form of posterior probability density functions, which were explored by rigorous Markov Chain Monte Carlo sampling. Results showed that the quantified parameters obtained from the inverse UQ effectively improved the predictive capability of the 1-D TS model.