ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Cihang Lu, Zeyun Wu, Xu Wu
Nuclear Technology | Volume 207 | Number 5 | May 2021 | Pages 692-710
Technical Paper | doi.org/10.1080/00295450.2020.1805259
Articles are hosted by Taylor and Francis Online.
Thermal stratification (TS) is a thermal-fluid phenomenon that can introduce large uncertainties to nuclear reactor safety. The stratified layers caused by TS can lead to temperature oscillations in the reactor core. They can also result in damages to both the reactor vessel and in-vessel components due to the growth of thermal fatigue cracks. More importantly, TS can impede the establishment of natural circulation, which is widely used for passive cooling and ensures the inherent safety of numerous reactor designs. A fast-running one-dimensional (1-D) model was recently developed in our research group to predict the TS phenomenon in pool-type sodium-cooled fast reactors. The efficient 1-D model provided reasonable temperature predictions for the test conditions investigated, but nonnegligible discrepancies between the 1-D predictions and the experimental temperature measurements were observed. These discrepancies are attributed to the model uncertainties (also known as model bias or errors) in the 1-D model and the parameter uncertainties in the input parameters.
In this study, we first recognized through a forward uncertainty analysis that the observed discrepancies between the computational predictions and the experimental temperature measurements could not be explained solely by input uncertainty propagation. We then performed an inverse uncertainty quantification (UQ) study to reduce the model uncertainties of the 1-D model using a modular Bayesian approach based on experimental data. Inverse UQ serves as a data assimilation process to simultaneously minimize the mismatches between the predictions and experimental measurements, while quantifying the associated parameter uncertainties. The solutions of the modular Bayesian approach were in the form of posterior probability density functions, which were explored by rigorous Markov Chain Monte Carlo sampling. Results showed that the quantified parameters obtained from the inverse UQ effectively improved the predictive capability of the 1-D TS model.