ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Trump picks former N.Y. congressman for NNSA administrator
Williams
President Trump has selected Brandon Williams to head the Department of Energy’s National Nuclear Security Administration, pending confirmation by the U.S. Senate.
Williams is a former one-term congressman (R., N.Y.),from 2023 to the beginning of 2025. Prior to political office he served in the U.S. Navy. Williams’s run for office gained attention in 2022 when he defeated fellow navy veteran Francis Conole, a Democrat, but he lost the seat last November to Democrat John Mannion.
“I will be honored to lead the tremendous scientific and engineering talent at NNSA,” Williams said, thanking Trump, according to WSYR-TV in Syracuse, N.Y.
Cihang Lu, Zeyun Wu, Xu Wu
Nuclear Technology | Volume 207 | Number 5 | May 2021 | Pages 692-710
Technical Paper | doi.org/10.1080/00295450.2020.1805259
Articles are hosted by Taylor and Francis Online.
Thermal stratification (TS) is a thermal-fluid phenomenon that can introduce large uncertainties to nuclear reactor safety. The stratified layers caused by TS can lead to temperature oscillations in the reactor core. They can also result in damages to both the reactor vessel and in-vessel components due to the growth of thermal fatigue cracks. More importantly, TS can impede the establishment of natural circulation, which is widely used for passive cooling and ensures the inherent safety of numerous reactor designs. A fast-running one-dimensional (1-D) model was recently developed in our research group to predict the TS phenomenon in pool-type sodium-cooled fast reactors. The efficient 1-D model provided reasonable temperature predictions for the test conditions investigated, but nonnegligible discrepancies between the 1-D predictions and the experimental temperature measurements were observed. These discrepancies are attributed to the model uncertainties (also known as model bias or errors) in the 1-D model and the parameter uncertainties in the input parameters.
In this study, we first recognized through a forward uncertainty analysis that the observed discrepancies between the computational predictions and the experimental temperature measurements could not be explained solely by input uncertainty propagation. We then performed an inverse uncertainty quantification (UQ) study to reduce the model uncertainties of the 1-D model using a modular Bayesian approach based on experimental data. Inverse UQ serves as a data assimilation process to simultaneously minimize the mismatches between the predictions and experimental measurements, while quantifying the associated parameter uncertainties. The solutions of the modular Bayesian approach were in the form of posterior probability density functions, which were explored by rigorous Markov Chain Monte Carlo sampling. Results showed that the quantified parameters obtained from the inverse UQ effectively improved the predictive capability of the 1-D TS model.