ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
Peter Yarsky
Nuclear Technology | Volume 207 | Number 5 | May 2021 | Pages 665-679
Technical Paper | doi.org/10.1080/00295450.2020.1810465
Articles are hosted by Taylor and Francis Online.
In a companion paper, the U.S. Nuclear Regulatory Commission (NRC) staff has described analyses performed using the TRAC/RELAP Advanced Computational Engine (TRACE) code to study the transient system response of the NuScale power module to a postulated beyond-design-basis loss of alternating-current (LOAC) power transient where the module protection system completely fails to insert the control rods. The subject paper studies the sensitivity of the event progression and consequences to variation in the initial reactor coolant system (RCS) temperature. These studies were performed by varying the effective steam generator heat transfer surface area between 100% and 50% of the nominal area. The results of the NRC staff analyses show that at increased initial temperatures, it is possible for the NuScale primary side to remain critical for an extended period of time, leading to a sustained loss of primary-side inventory through pressure relief until the natural circulation flow pattern in the RCS becomes broken. After the flow loop is broken, reactor power decreases significantly, and the primary figures of merit important to safety are met with substantial margin.