ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
H. Andrews, S. Phongikaroon
Nuclear Technology | Volume 207 | Number 4 | April 2021 | Pages 617-626
Technical Paper | doi.org/10.1080/00295450.2020.1776538
Articles are hosted by Taylor and Francis Online.
This study sets out to demonstrate the capability of using electrochemistry and laser-induced breakdown spectroscopy (LIBS) for concentration prediction of multiple species in a molten salt system at 773 K. Samples contained UCl3 ranging from 0 to 10 wt%, GdCl3 ranging from 0 to 5 wt%, and MgCl2 ranging from 0 to 1.5 wt%, with LiCl-KCl eutectic salt as the remainder. Multivariate models were produced using semi-differential cyclic voltammograms (SDCVs) and normalized spectra acquired from LIBS. The SDCV model best predicted UCl3 levels, while the LIBS model best predicted GdCl3 and MgCl2 concentrations. A third model was developed by fusing the SDCV and LIBS signals. This model predicted UCl3 well and predicted GdCl3 and MgCl2 better than previous models. This model was then evaluated by using blind samples. The model predictions correlated well with inductively coupled plasma mass spectroscopy measurements, passing a t-test at a 95% confidence level.