ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
S. Stimpson, T. Pandya, K. Royston, B. Collins, A. Godfrey
Nuclear Technology | Volume 207 | Number 4 | April 2021 | Pages 582-595
Technical Paper | doi.org/10.1080/00295450.2020.1770557
Articles are hosted by Taylor and Francis Online.
The Consortium for Advanced Simulation of Light Water Reactors is developing the Virtual Environment for Reactor Applications (VERA), and the MPACT code, which is the primary deterministic neutron transport solver in VERA, provides sub-pin level flux and power distributions as part of full-scale cycle depletion and analysis. In such calculations, an important aspect is the radial reflector treatment. To improve the fidelity of the radial reflector treatment, MPACT was extended to approximate the modeling of the reactor’s structural components such as the core shroud, barrel, neutron pads, and vessel. This work explores several modeling configurations with varying levels of fidelity and computational burden and assesses the importance of modeling fidelity on the eigenvalue and pin power distribution.
Two two-dimensional (2-D) problems were analyzed to assess the impact on eigenvalue and pin power distributions with low-fidelity, coarse square cell reflector representations: (1) a Watts Bar Nuclear Plant Unit 1 (WBN1) quarter-core slice with depletion and (2) an AP1000 quarter-core slice. The analyses showed that the effect on eigenvalue is fairly small, but the effect on pin power is more pronounced, especially locally in the assemblies closest to the periphery, where the maximum pin power difference is nearly 3.5% in the AP1000 case. Two additional 2-D problems were used to assess the comparison between the low-fidelity coarse square cell treatment and a high-fidelity geometric representation that uses subpin material specification: (1) the same WBN1 quarter-core slice and (2) a representative model of the NuScale small modular reactor (SMR), which features a solid reflector design with moderator holes. These results demonstrate that even a coarse, low-fidelity representation adequately captures the necessary simulation characteristics. Last, these capabilities were applied to the 2-D WBN1 quarter-core depletion to assess the impact on vessel fluence using VeraShift. From adjoint calculations, pins along the periphery were observed to be of highest importance for fluence calculation, so the impact of the reflector representation in MPACT could theoretically substantially affect the predicted result. However, it was observed that the change in pin powers along the periphery minimally impacts the maximum vessel fluence with a difference within the statistical uncertainty but provides terrific insight on the sensitivity of the peripheral pins.