ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Trump picks former N.Y. congressman for NNSA administrator
Williams
President Trump has selected Brandon Williams to head the Department of Energy’s National Nuclear Security Administration, pending confirmation by the U.S. Senate.
Williams is a former one-term congressman (R., N.Y.),from 2023 to the beginning of 2025. Prior to political office he served in the U.S. Navy. Williams’s run for office gained attention in 2022 when he defeated fellow navy veteran Francis Conole, a Democrat, but he lost the seat last November to Democrat John Mannion.
“I will be honored to lead the tremendous scientific and engineering talent at NNSA,” Williams said, thanking Trump, according to WSYR-TV in Syracuse, N.Y.
S. Stimpson, T. Pandya, K. Royston, B. Collins, A. Godfrey
Nuclear Technology | Volume 207 | Number 4 | April 2021 | Pages 582-595
Technical Paper | doi.org/10.1080/00295450.2020.1770557
Articles are hosted by Taylor and Francis Online.
The Consortium for Advanced Simulation of Light Water Reactors is developing the Virtual Environment for Reactor Applications (VERA), and the MPACT code, which is the primary deterministic neutron transport solver in VERA, provides sub-pin level flux and power distributions as part of full-scale cycle depletion and analysis. In such calculations, an important aspect is the radial reflector treatment. To improve the fidelity of the radial reflector treatment, MPACT was extended to approximate the modeling of the reactor’s structural components such as the core shroud, barrel, neutron pads, and vessel. This work explores several modeling configurations with varying levels of fidelity and computational burden and assesses the importance of modeling fidelity on the eigenvalue and pin power distribution.
Two two-dimensional (2-D) problems were analyzed to assess the impact on eigenvalue and pin power distributions with low-fidelity, coarse square cell reflector representations: (1) a Watts Bar Nuclear Plant Unit 1 (WBN1) quarter-core slice with depletion and (2) an AP1000 quarter-core slice. The analyses showed that the effect on eigenvalue is fairly small, but the effect on pin power is more pronounced, especially locally in the assemblies closest to the periphery, where the maximum pin power difference is nearly 3.5% in the AP1000 case. Two additional 2-D problems were used to assess the comparison between the low-fidelity coarse square cell treatment and a high-fidelity geometric representation that uses subpin material specification: (1) the same WBN1 quarter-core slice and (2) a representative model of the NuScale small modular reactor (SMR), which features a solid reflector design with moderator holes. These results demonstrate that even a coarse, low-fidelity representation adequately captures the necessary simulation characteristics. Last, these capabilities were applied to the 2-D WBN1 quarter-core depletion to assess the impact on vessel fluence using VeraShift. From adjoint calculations, pins along the periphery were observed to be of highest importance for fluence calculation, so the impact of the reflector representation in MPACT could theoretically substantially affect the predicted result. However, it was observed that the change in pin powers along the periphery minimally impacts the maximum vessel fluence with a difference within the statistical uncertainty but provides terrific insight on the sensitivity of the peripheral pins.