ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S. Stimpson, T. Pandya, K. Royston, B. Collins, A. Godfrey
Nuclear Technology | Volume 207 | Number 4 | April 2021 | Pages 582-595
Technical Paper | doi.org/10.1080/00295450.2020.1770557
Articles are hosted by Taylor and Francis Online.
The Consortium for Advanced Simulation of Light Water Reactors is developing the Virtual Environment for Reactor Applications (VERA), and the MPACT code, which is the primary deterministic neutron transport solver in VERA, provides sub-pin level flux and power distributions as part of full-scale cycle depletion and analysis. In such calculations, an important aspect is the radial reflector treatment. To improve the fidelity of the radial reflector treatment, MPACT was extended to approximate the modeling of the reactor’s structural components such as the core shroud, barrel, neutron pads, and vessel. This work explores several modeling configurations with varying levels of fidelity and computational burden and assesses the importance of modeling fidelity on the eigenvalue and pin power distribution.
Two two-dimensional (2-D) problems were analyzed to assess the impact on eigenvalue and pin power distributions with low-fidelity, coarse square cell reflector representations: (1) a Watts Bar Nuclear Plant Unit 1 (WBN1) quarter-core slice with depletion and (2) an AP1000 quarter-core slice. The analyses showed that the effect on eigenvalue is fairly small, but the effect on pin power is more pronounced, especially locally in the assemblies closest to the periphery, where the maximum pin power difference is nearly 3.5% in the AP1000 case. Two additional 2-D problems were used to assess the comparison between the low-fidelity coarse square cell treatment and a high-fidelity geometric representation that uses subpin material specification: (1) the same WBN1 quarter-core slice and (2) a representative model of the NuScale small modular reactor (SMR), which features a solid reflector design with moderator holes. These results demonstrate that even a coarse, low-fidelity representation adequately captures the necessary simulation characteristics. Last, these capabilities were applied to the 2-D WBN1 quarter-core depletion to assess the impact on vessel fluence using VeraShift. From adjoint calculations, pins along the periphery were observed to be of highest importance for fluence calculation, so the impact of the reflector representation in MPACT could theoretically substantially affect the predicted result. However, it was observed that the change in pin powers along the periphery minimally impacts the maximum vessel fluence with a difference within the statistical uncertainty but provides terrific insight on the sensitivity of the peripheral pins.