ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Mohamed Elsamahy, Tarek F. Nagla, Mohamed A. E. Abdel-Rahman
Nuclear Technology | Volume 207 | Number 4 | April 2021 | Pages 558-574
Technical Paper | doi.org/10.1080/00295450.2020.1792742
Articles are hosted by Taylor and Francis Online.
This paper proposes the application of a pattern recognition–based technique to enhance the process of control rod position identification in pressurized water reactors (PWRs). The proposed technique employs a multivariant analysis technique, namely, principal component analysis (PCA) and clustering analysis (CA) to identify the position of the PWR control rod using its impact on the core radial thermal neutron flux along the axial track of motion. The results of these investigations have shown that the proposed technique successfully removed the limitation on the data size and any limitations imposed by outlier samples, extracted the noise, and provided near-instantaneous analytical and visual ways for position identification process with excellent generalization fitting and prediction efficiencies. In the context of this paper, multiple in-depth simulations are conducted to ascertain the efficiency of the proposed technique in identifying the control rod positions. These simulations have been conducted using a Westinghouse 2772-MW(thermal) PWR benchmark at 100% thermal power generation, where a three-dimensional TRITON FORTRAN-code has been utilized to simulate the radial thermal neutron flux of the PWR core. The PCA model is developed, tested, and generalized using the SIMCA software package. In addition, CA is also performed via the Minitab statistics software package in order to confirm the efficiency of the proposed technique.