ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Diego Mandelli, Carlo Parisi, Nolan Anderson, Zhegang Ma, Hongbin Zhang
Nuclear Technology | Volume 207 | Number 3 | March 2021 | Pages 389-405
Technical Paper | doi.org/10.1080/00295450.2020.1794234
Articles are hosted by Taylor and Francis Online.
Accident tolerant fuels (ATFs) are new nuclear fuels developed in response to the accident at the Fukushima power station in March 2011. The goal of ATFs is to withstand accident scenarios through better performance compared to currently employed fuels (e.g., small-scale hydrogen generation). This paper targets a method for evaluating and comparing ATF performance from a probabilistic risk assessment (PRA) perspective by employing a newly developed combination of event trees and dynamic PRA methods. Compared to classical PRA methods based on event trees and fault trees, dynamic PRA can evaluate with higher resolution the safety impacts of physics dynamics and the timing/sequencing of events on the accident progression without the need to introduce overly conservative modeling assumptions and success criteria. In this paper, we analyze the impact on the accident progression of three different cladding configurations for two initiating events [a large break loss-of-coolant accident (LB-LOCA) and a station blackout (SBO)] by employing dynamic PRA methods. The goal is to compare the safety performance of ATFs (FeCrAl and Cr-coated cladding) and the currently employed Zr-based clad fuel. We employ two different strategies. The first focuses on the identification of success criteria discrepancies between the accident sequences generated by the classical PRA model and the set of simulation runs generated by dynamic PRA using ATF. The second one, on the other hand, directly uses dynamic PRA to evaluate the impact of timing of events (e.g., recovery actions) on accident progression. By applying these methods to the LB-LOCA and SBO initiating events, we show how dynamic PRA methods can provide analysts with detailed and quantitative information on the safety impact of ATFs.