ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Trump picks former N.Y. congressman for NNSA administrator
Williams
President Trump has selected Brandon Williams to head the Department of Energy’s National Nuclear Security Administration, pending confirmation by the U.S. Senate.
Williams is a former one-term congressman (R., N.Y.),from 2023 to the beginning of 2025. Prior to political office he served in the U.S. Navy. Williams’s run for office gained attention in 2022 when he defeated fellow navy veteran Francis Conole, a Democrat, but he lost the seat last November to Democrat John Mannion.
“I will be honored to lead the tremendous scientific and engineering talent at NNSA,” Williams said, thanking Trump, according to WSYR-TV in Syracuse, N.Y.
Diego Mandelli, Andrea Alfonsi, Congjian Wang, Zhegang Ma, Carlo Parisi, Tunc Aldemir, Curtis Smith, Robert Youngblood
Nuclear Technology | Volume 207 | Number 3 | March 2021 | Pages 363-375
Technical Paper | doi.org/10.1080/00295450.2020.1776030
Articles are hosted by Taylor and Francis Online.
A new generation of dynamic methods has started receiving attention for nuclear reactor probabilistic risk assessment (PRA). These methods, which are commonly referred to as dynamic PRA (DPRA) methodologies, directly employ system simulators to evaluate the impact of timing and sequencing of events (e.g., failure of components) on accident progression. Compared to classical PRA (CPRA) methods, which are based on static Boolean logic structures such as fault trees and event trees (ETs), DPRA methods can provide valuable insights from an accident management perspective. However, as of today this class of methods has received limited attention in practical applications. One factor is DPRA research and development has progressed mostly as an alternative to state-of-practice CPRA methods (i.e., disconnected from currently employed PRA methods). This disconnect is addressed in this paper by presenting several algorithms that can be employed to bridge the gap between CPRA and DPRA. First, algorithms designed to identify differences between CPRA and DPRA results are presented. The identification process compares the CPRA ET sequence or the minimal cut sets (MCSs) obtained by CPRA with the set of transients simulated by the DPRA. If inconsistencies are observed, solutions are provided to incorporate these differences back into the CPRA by employing DPRA to inform existing CPRA. We performed this incorporation either probabilistically (e.g., by updating MCS probability) or topologically (by adding new branching conditions or sequences in the ET).