ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Rosendo Borjas Nevarez, Bruce McNamara, Frederic Poineau
Nuclear Technology | Volume 207 | Number 2 | February 2021 | Pages 263-269
Technical Paper | doi.org/10.1080/00295450.2020.1757961
Articles are hosted by Taylor and Francis Online.
For several decades, extensive research has been performed on the recovery and purification of zirconium from spent nuclear fuel cladding using a variety of chlorination reaction processes. After the reaction between fuel cladding and chlorine gas, zirconium tetrachloride is separated from other chloride species based on their boiling/sublimation points; however, the presence of iron and niobium chloride impurities limits the efficiency of these processes. In this work, chlorination products of Zr, Fe, and Nb mixtures were analyzed by thermogravimetric analysis, and the results suggest that Fe impurities cannot be removed via chlorination alone. Purification of zirconium from Zircaloy-2, Zircaloy-4, and a Zr-Nb alloy was performed via hydrochlorination using a sealed tube reaction system. The purity of the final ZrCl4 products is higher than 99.99% after successful removal of Fe and Nb.