ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Gwendolyn J. Chee, Roberto E. Fairhurst Agosta, Jin Whan Bae, Robert R. Flanagan, Anthony M. Scopatz, Kathryn D. Huff
Nuclear Technology | Volume 207 | Number 2 | February 2021 | Pages 182-203
Technical Paper | doi.org/10.1080/00295450.2020.1753444
Articles are hosted by Taylor and Francis Online.
The present U.S. nuclear fuel cycle faces challenges that hinder the expansion of nuclear energy technology. The U.S. Department of Energy identified four nuclear fuel cycle options that make nuclear energy technology more desirable. Successfully analyzing the transitions from the current fuel cycle to these promising fuel cycles requires a nuclear fuel cycle simulator that can predictively and automatically deploy fuel cycle facilities to meet user-defined power demand. This work introduces and demonstrates the demand-driven deployment capabilities in Cyclus, an open-source nuclear fuel cycle simulator framework. User-controlled capabilities such as time-series forecasting algorithms, supply buffers, and facility preferences were introduced to give users tools to minimize power undersupply in a transition scenario simulation. The demand-driven deployment capabilities are referred to as d3ploy. We demonstrate the capability of d3ploy to predict future commodities’ supply and demand, and automatically deploy fuel cycle facilities to meet the predicted demand in four transition scenarios. Using d3ploy to set up transition scenarios saves the user simulation setup time compared to previous efforts that required a user to manually calculate and use trial and error to set up the deployment scheme for the supporting fuel cycle facilities.