ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Wilson Cowherd, John Stillman, John Gahl, Leslie Foyto, Erik Wilson
Nuclear Technology | Volume 207 | Number 2 | February 2021 | Pages 167-181
Technical Paper | doi.org/10.1080/00295450.2020.1763720
Articles are hosted by Taylor and Francis Online.
A new type of low-enriched uranium (LEU) fuel based on an alloy of uranium and molybdenum is expected to allow the conversion of U.S. domestic high-performance research and test reactors requiring high density fuel from highly enriched uranium (HEU) to LEU. The University of Missouri Research Reactor (MURR®) has undergone design and performance calculations for conversion to this LEU fuel. Presented in this paper is the analysis of a crucial step in the conversion process: the sequence of MURR transition cores from all fresh to equilibrium burnup LEU operations. During the initial conversion from HEU to LEU fuel, MURR will operate atypically due to the lack of burned LEU elements. Given the constraints of MURR operation and experiments, a proposed transition scheme minimizes the time MURR operates atypically compared to the prototypic cycles currently run with HEU fuel and moves quickly to the same sort of equilibrium cycles for the LEU fuel.