ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
John B. Case, Harris R. Greenberg, Bruce E. Kirstein
Nuclear Technology | Volume 207 | Number 1 | January 2021 | Pages 62-73
Technical Paper | doi.org/10.1080/00295450.2020.1747837
Articles are hosted by Taylor and Francis Online.
Analytical solutions for temperatures in an infinite region bounded internally by a cylinder have proved to be useful for thermal analysis of heat-producing nuclear waste disposal scenarios where the thermal design criteria are peak temperatures. The practicality of an analytical solution for the temperature of the host rock used in forced-ventilation thermal analyses has been illustrated by a computational time of a few seconds. Prior to the use of an analytical temperature solution for the host rock, the computation time was on the order of hours. However, the published analytical temperature solution for the infinite region bounded internally by a cylinder with constant heat flux applied at the cylinder wall does not satisfy the boundary condition. This temperature solution is shown to be correct herein with respect to temperature predictions derived from a solution that does satisfy the boundary condition.