ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Tucker C. McClanahan, Tim Goorley, John Auxier, II
Nuclear Technology | Volume 207 | Number 1 | January 2021 | Pages 19-36
Technical Paper | doi.org/10.1080/00295450.2020.1741295
Articles are hosted by Taylor and Francis Online.
In order to model the activated isotopes and resulting dose from a nuclear detonation in an urban environment, the Activation and Transmutation of Isotopes in an Unstructured Mesh (ACTIUM) Python toolkit has been developed to combine the unstructured mesh–based particle transport capability of MCNP6.2 with the CINDER2008 transmutation code to produce quantities of interest for the post-detonation nuclear forensics and weapons effects communities. The ACTIUM toolkit has been implemented and validated with a number of test cases from a simple analytic model to a case study of the urban detonation in Nagasaki, Japan. The ACTIUM approach is the first of its kind to couple the latest release of CINDER2008 as a part of the Activation in Accelerator Radiation Environments (AARE) package with MCNP6.2 and produce transmuted quantities per time step on an unstructured mesh for the nuclear forensics and weapon effects communities. ACTIUM uses the latest ENDF/B-VIII.0, TENDL2017, and JENDL4 cross-section libraries for the transmutation calculations and includes methods for producing material cards for the initial MCNP6.2 unstructured mesh calculation based on highly detailed materials often found in urban environments on a city-specific basis.