ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
M. Budi Setiawan, P. Made Udiyani, S. Kuntjoro, I. Husnayani, T. Surbakti
Nuclear Technology | Volume 206 | Number 12 | December 2020 | Pages 1945-1950
Technical Note | doi.org/10.1080/00295450.2020.1720558
Articles are hosted by Taylor and Francis Online.
The use of the RSG-GAS research reactor as a transmutation reactor is analyzed to study its effectiveness for transmuting long-lived fission products (LLFPs), particularly 129I and 99Tc. Both radionuclides selected are assumed as discharged from of a 1000-MW(electric) pressurized water reactor (PWR) spent fuel. If these radionuclides are stored in sustainable geologic disposal, they will require high-cost handling due to their special shielding. In one cycle of PWR1000 operation, the 99Tc produced is 43.7 kg and 129I is 9.5 kg in its spent fuel. Considering reactor safety, the maximum target mass permitted to be transmuted in the RSG-GAS is 3.0 kg for the 99Tc and 5.0 kg for the 129I. In 1 year of (five cycles) operation, the 99Tc and 129I targets would be reduced by 126 and 290 g, respectively. Although it has the potentiality to safely transmute LLFP targets in its core, RSG-GAS requires longer irradiation time (about 20 years) to entirely transmute the targets.