ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Rencheng Wang, Boxian Chen, Ding Chen, Xuan Zhao
Nuclear Technology | Volume 206 | Number 12 | December 2020 | Pages 1909-1918
Technical Paper | doi.org/10.1080/00295450.2020.1721406
Articles are hosted by Taylor and Francis Online.
Membranes have been widely used in low-level radioactive wastewater (LLRW) treatment and are under irradiation as a result of radioactive nuclides present in the wastewater, which may cause damage to the membranes and weaken their performances. Irradiation-induced material property changes of several organic membrane matrices and modifiers at different gamma irradiation doses were investigated in this work. The organics and membrane samples were irradiated using a 60Co source at a range of irradiation doses of 0 to 100 kGy. The effects of irradiation on these materials were detected using Fourier transform infrared spectroscopy spectra, ultraviolet spectra, and ion chromatography (used to detect membrane leakage). The results indicated that chain scission and cross linking occurred simultaneously in the membrane matrices, while the modifiers tended to polymerize during the irradiation process. As the irradiation dose increased, the chain scission and polymerization became more significant. The polyamide membrane was observed to be more irradiation tolerant in comparison with the other membranes used in this study. In regard to the modifiers, polyvinyl alcohol and 2,3-epoxypropyl trimethyl ammonium chloride showed significant structural changes at an irradiation dose of 2 kGy and polyetherimide and methyl methacrylate at an irradiation dose of 100 kGy, while chain scission was not detected in the other modifiers at irradiation doses of 2, 10, and 100 kGy, indicating that they remained relatively stable at these irradiation doses. These findings provide useful information for the application of membrane technologies in treating LLRW.