ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Supplier Showcase focus: Reducing cumulative radiological exposure
The American Nuclear Society is hosting a new Supplier Showcase webinar, “Reducing Cumulative Radiological Exposure with Advanced Source Term Removal Technologies,” on October 15 from 2:00 p.m. to 3:00 p.m. (EDT) on recent advancements in decontamination technology.
The webinar is free for all viewers and requires registration.
J. C. Rook, K. P. Weber, E. C. Corcoran
Nuclear Technology | Volume 206 | Number 12 | December 2020 | Pages 1861-1874
Technical Paper | doi.org/10.1080/00295450.2020.1720557
Articles are hosted by Taylor and Francis Online.
For irradiation experiments (e.g., of per- and polyfluoroalkyl substances), values of nuclear particle flux and absorbed dose rates were obtained for the Safe LOW-POwer Kritical Experiment-2 (SLOWPOKE-2) nuclear reactor at the Royal Military College of Canada using extensive simulations of the reactor core via the Monte Carlo N-Particle code, version 6 (MCNP6). Calculations from this work were compared to data from previously conducted experimental and simulation work to ensure simulation fidelity. In addition, reactor core burnup calculations were conducted using the fuel-depletion capability in MCNP6.1 to address the 30+ years of SLOWPOKE-2 reactor use. The combined absorbed dose rate in the inner irradiation sites was simulated to be 36 ± 1 kGy h−1 at a 10-kW(thermal) power setting, specifically, 20 ± 6 kGy h−1 from neutrons and 16 ± 5 kGy h−1 from photons.