ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Young A Suh, Man-Sung Yim
Nuclear Technology | Volume 206 | Number 12 | December 2020 | Pages 1840-1860
Technical Paper | doi.org/10.1080/00295450.2020.1731405
Articles are hosted by Taylor and Francis Online.
Human error has been highlighted as main cause of industrial and nuclear accidents. One of the key issues related to human error is a worker’s fitness for duty (FFD). FFD refers to the mental and physical ability of employees to safely perform their job. The objective of this study is to investigate the feasibility of identifying a worker’s FFD status using biosignals. The FFD statuses examined were with respect to alcohol use, depression, stress, anxiety, and sleep deprivation. Biosignals examined in the study include electrical activity in the brain measured by electroencephalogram and referred to as EEG, electrical activity of the heartbeat measured by electrocardiogram and referred to as ECG, galvanic skin response (GSR), blood volume pulse (BVP), dynamic changes in blood pressure and referred to as BPHEG, and respiration. A total of 114 volunteers participated in the study as experimental subjects from whom biodata were collected during their resting states (eyes closed and eyes open). The steps followed in the study include signal preprocessing, power spectrum feature analysis, important feature selection, and support vector machine (SVM) classification using 5-fold cross validation to identify a worker’s FFD status. Among the 70 biosignal indicators, important features were selected by Multivariate Analysis of Variance (MANOVA). The best model developed with the SVM used 64 biosignal indicators and showed a binary (fit or unfit) classification accuracy of 99.4% and a multi-classification accuracy of 97.7%. While limitations of the current work remain, the study indicates the possibility of implementing an effective FFD management program to reduce human error in plant operations.
A thumbnail sketch of the study is as follows:
1. To reduce human error in nuclear operations, use of biosignals was investigated to identify FFD status of workers.
2. EEG, ECG, GSR, BVP, BPHEG, and respiration signals were used to identify a worker’s FFD status.
3. The SVM-based model was successfully implemented for multi-class and binary-class FFD classification.