ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Young A Suh, Man-Sung Yim
Nuclear Technology | Volume 206 | Number 12 | December 2020 | Pages 1840-1860
Technical Paper | doi.org/10.1080/00295450.2020.1731405
Articles are hosted by Taylor and Francis Online.
Human error has been highlighted as main cause of industrial and nuclear accidents. One of the key issues related to human error is a worker’s fitness for duty (FFD). FFD refers to the mental and physical ability of employees to safely perform their job. The objective of this study is to investigate the feasibility of identifying a worker’s FFD status using biosignals. The FFD statuses examined were with respect to alcohol use, depression, stress, anxiety, and sleep deprivation. Biosignals examined in the study include electrical activity in the brain measured by electroencephalogram and referred to as EEG, electrical activity of the heartbeat measured by electrocardiogram and referred to as ECG, galvanic skin response (GSR), blood volume pulse (BVP), dynamic changes in blood pressure and referred to as BPHEG, and respiration. A total of 114 volunteers participated in the study as experimental subjects from whom biodata were collected during their resting states (eyes closed and eyes open). The steps followed in the study include signal preprocessing, power spectrum feature analysis, important feature selection, and support vector machine (SVM) classification using 5-fold cross validation to identify a worker’s FFD status. Among the 70 biosignal indicators, important features were selected by Multivariate Analysis of Variance (MANOVA). The best model developed with the SVM used 64 biosignal indicators and showed a binary (fit or unfit) classification accuracy of 99.4% and a multi-classification accuracy of 97.7%. While limitations of the current work remain, the study indicates the possibility of implementing an effective FFD management program to reduce human error in plant operations.
A thumbnail sketch of the study is as follows:
1. To reduce human error in nuclear operations, use of biosignals was investigated to identify FFD status of workers.
2. EEG, ECG, GSR, BVP, BPHEG, and respiration signals were used to identify a worker’s FFD status.
3. The SVM-based model was successfully implemented for multi-class and binary-class FFD classification.