ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Corporate powerhouses join pledge to triple nuclear energy by 2050
Following in the steps of an international push to expand nuclear power capacity, a group of powerhouse corporations signed and announced a pledge today to support the goal of at least tripling global nuclear capacity by 2050.
Jeongwon Seo, Hany Abdel-Khalik, Zoltan Perko
Nuclear Technology | Volume 206 | Number 12 | December 2020 | Pages 1827-1839
Technical Paper | doi.org/10.1080/00295450.2020.1721407
Articles are hosted by Taylor and Francis Online.
This paper presents an algorithm for completing sensitivity analysis that respects linear constraints placed on the associated model’s input parameters. Any sensitivity analysis (linear or nonlinear, local or global) focuses on measuring the impact of input parameter variations on model responses of interest, which may require the analyst to execute the model numerous times with different model parameter perturbations. With the constraints present, the degrees of freedom available for input parameter variations are reduced, and hence any analysis that changes model parameters must respect these constraints. Focusing here on linear constraints, earlier work has shown that constraints may be respected in many ways, causing ambiguities, i.e., nonuniqueness, in the results of a sensitivity analysis, forcing the analyst to introduce dependencies with downstream analyses, e.g., uncertainty quantification, that employ the sensitivity analysis results. This paper develops the theoretical details for a new algorithm to select model parameter variations that automatically satisfy linear constraints resulting in unique results for the sensitivity analysis, thereby removing any custom dependencies with downstream analyses. To demonstrate the performance of the algorithm, it is applied to solve the multigroup eigenvalue problem for the multiplication factor in a representative CANDU core-wide model. The model parameters analyzed are the group prompt neutron fractions, whose summation must be equal to one over all energy groups. The results indicate that the new algorithm identifies the gradient direction uniquely which represents the direction of maximum change while satisfying the constraints, thus removing any ambiguities resulting from the constraints as identified by earlier work.