ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Charles Forsberg, Guiqiu (Tony) Zheng, Ronald G. Ballinger, Stephen T. Lam
Nuclear Technology | Volume 206 | Number 11 | November 2020 | Pages 1778-1801
Technical Paper | doi.org/10.1080/00295450.2019.1691400
Articles are hosted by Taylor and Francis Online.
Recent developments in high-magnetic-field fusion systems have created large incentives to develop flibe (Li2BeF4) salt fusion blankets that have four functions: (1) convert the high energy of fusion neutrons into heat for the power system, (2) convert lithium into tritium—the fusion fuel, (3) shield the magnets against radiation, and (4) cool the first wall that separates the plasma from the salt blanket. Flibe is the same coolant proposed for fluoride-salt-cooled high-temperature reactors that use clean flibe coolant and graphite-matrix coated-particle fuel. Flibe is also the coolant proposed for some molten salt reactors (MSRs) where the fuel is dissolved in the coolant. The multiple applications for flibe as a coolant create large incentives for cooperative fusion-fission programs for development of the underlying science, design tools, technology (pumps, instrumentation, salt purification, materials, tritium removal, etc.), and supply chains. Other high-temperature molten salts are being developed for alternative MSR systems and for advanced Gen-III concentrated solar power (CSP) systems. The overlapping characteristics of flibe salt with these other salt systems create significant incentives for cooperative fusion-fission-solar programs in multiple areas.
We describe the fission and fusion flibe-cooled systems, what has created this synergism, what is different and the same between fission and fusion in terms of using flibe, and the common challenges. We review (1) the characteristics of flibe salts, (2) the status of the technology, (3) the options for tritium capture and control in the salt, heat exchangers, and secondary heat transfer loops, and (4) the coupling to power cycles with heat storage. The technology overlap between flibe systems and other high-temperature MSR and CSP salt systems is described. This defines where there are opportunities for cooperative programs across fission, fusion, and CSP salt programs.