ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Qiufeng Yang, Jianbang Ge, Yafei Wang, Jinsuo Zhang
Nuclear Technology | Volume 206 | Number 11 | November 2020 | Pages 1769-1777
Technical Paper | doi.org/10.1080/00295450.2020.1757976
Articles are hosted by Taylor and Francis Online.
The electrochemical behavior of La2O3 was investigated in LiF-NaF-KF (FLiNaK, 46.5-11.5-42.0 mol %) eutectic at 700°C. In the electrochemical tests, two kinds of working electrodes, i.e., tungsten and graphite, were utilized. The present study showed that La3+ ions can be deposited in the form of La metal on a tungsten cathode or LaC2 on a graphite cathode, and O2− can be removed in the form of CO/CO2 using a graphite anode. Therefore, a graphite or tungsten cathode (for La3+ removal), and a graphite anode (for O2− removal) are good options to remove both La3+ and O2− from the molten salts. In addition to the electrochemical tests, inductively coupled plasma mass spectroscopy analysis was used to measure the concentration of the lanthanum element and X-ray powder diffraction techniques were applied to determine the chemical forms of lanthanum in the salt. It turned out that the solubility of La3+ in the molten FLiNaK was 6.81 × 10−4 wt% at 700°C and LaOF was formed by the chemical reactions between La2O3 and alkali fluorides during the heating process.