ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Qiufeng Yang, Jianbang Ge, Yafei Wang, Jinsuo Zhang
Nuclear Technology | Volume 206 | Number 11 | November 2020 | Pages 1769-1777
Technical Paper | doi.org/10.1080/00295450.2020.1757976
Articles are hosted by Taylor and Francis Online.
The electrochemical behavior of La2O3 was investigated in LiF-NaF-KF (FLiNaK, 46.5-11.5-42.0 mol %) eutectic at 700°C. In the electrochemical tests, two kinds of working electrodes, i.e., tungsten and graphite, were utilized. The present study showed that La3+ ions can be deposited in the form of La metal on a tungsten cathode or LaC2 on a graphite cathode, and O2− can be removed in the form of CO/CO2 using a graphite anode. Therefore, a graphite or tungsten cathode (for La3+ removal), and a graphite anode (for O2− removal) are good options to remove both La3+ and O2− from the molten salts. In addition to the electrochemical tests, inductively coupled plasma mass spectroscopy analysis was used to measure the concentration of the lanthanum element and X-ray powder diffraction techniques were applied to determine the chemical forms of lanthanum in the salt. It turned out that the solubility of La3+ in the molten FLiNaK was 6.81 × 10−4 wt% at 700°C and LaOF was formed by the chemical reactions between La2O3 and alkali fluorides during the heating process.