ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
EPA administrator Lee Zeldin talks the future of nuclear
In a recent interview on New York radio station 77 WABC, administrator of the Environmental Protection Agency Lee Zeldin talked with host John Catsimatidis about the near-term future of the domestic nuclear industry and the role the EPA will play in the sector.
Catsimatidis kicked off the interview by asking if the U.S. will be able to reach total energy independence. Zeldin responded by saying that decreasing energy dependence on other countries, especially adversaries, was a top priority for him and the Trump administration.
Jason A. Hearne, Pavel V. Tsvetkov
Nuclear Technology | Volume 206 | Number 11 | November 2020 | Pages 1740-1750
Technical Paper | doi.org/10.1080/00295450.2020.1746612
Articles are hosted by Taylor and Francis Online.
The optical properties of FLiBe salt in a Fluoride-Salt-Cooled High-Temperature Reactor (FHR) present an opportunity to utilize Cerenkov radiation measurements to reconstruct the power profile in the core and detect various anomalies that could occur during operation. The Cerenkov light produced within a coolant channel is strongly correlated to the fission rate density and power level in the surrounding fuel assembly and travels freely through the optically transparent salt. The light coming from coolant channels can be measured by an array of photon detectors above the channels or a system of mirrors and light guides to a detector. This allows the assembly-level power profile in the core to be reconstructed, identifying hot spots within the core. By comparing the levels of light detected to a baseline operating state, anomalies can be detected as well as their location within the core. The method has been developed and assessed computationally to realize this approach for FHRs. Details of the method and demonstrations of its applications are discussed in this paper.