ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Sheng Zhang, Xiaodong Sun
Nuclear Technology | Volume 206 | Number 11 | November 2020 | Pages 1721-1739
Technical Paper | doi.org/10.1080/00295450.2020.1749481
Articles are hosted by Taylor and Francis Online.
Molten salts have been proposed as heat transfer media due to their superior thermal performance at elevated temperatures. A number of heat transfer correlations have been proposed in the literature for molten salts without explicitly considering the radiative heat transfer effect in the salts, which may not be negligible. This study therefore attempts to (1) quantitatively analyze the convective and radiative heat transfer of molten salts using an overall heat transfer model that includes a radiative heat transfer model developed in this research and an existing conventional convective heat transfer model/correlation, such as the Sieder-Tate or Hausen correlation, and (2) provide rationale on under what conditions it is necessary to consider the radiative heat transfer effect in salts. A parametric study was performed using the radiative heat transfer model developed to investigate the effects of various input variables, including the tube size (inner diameter 5 to 50 mm), salt temperature (500°C to 1000°C), salt and wall temperature difference (5°C to 100°C), and salt absorption coefficient (1 to 100 m-1). Our study indicates that (1) the proposed overall heat transfer model reasonably predicts the salt convective and radiative heat transfer, (2) the radiative heat transfer is more important for laminar flows than transitional and turbulent flows, (3) the radiative heat transfer is more important in tubes of larger inner diameter, (4) the salt temperature affects the radiative heat transfer significantly while the temperature difference between the salt and wall has a slightly smaller effect for the range investigated (ΔT = 5°C to 100°C), and (5) the salt absorption coefficient significantly affects the salt radiative heat transfer.