ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Sheng Zhang, Xiaodong Sun
Nuclear Technology | Volume 206 | Number 11 | November 2020 | Pages 1721-1739
Technical Paper | doi.org/10.1080/00295450.2020.1749481
Articles are hosted by Taylor and Francis Online.
Molten salts have been proposed as heat transfer media due to their superior thermal performance at elevated temperatures. A number of heat transfer correlations have been proposed in the literature for molten salts without explicitly considering the radiative heat transfer effect in the salts, which may not be negligible. This study therefore attempts to (1) quantitatively analyze the convective and radiative heat transfer of molten salts using an overall heat transfer model that includes a radiative heat transfer model developed in this research and an existing conventional convective heat transfer model/correlation, such as the Sieder-Tate or Hausen correlation, and (2) provide rationale on under what conditions it is necessary to consider the radiative heat transfer effect in salts. A parametric study was performed using the radiative heat transfer model developed to investigate the effects of various input variables, including the tube size (inner diameter 5 to 50 mm), salt temperature (500°C to 1000°C), salt and wall temperature difference (5°C to 100°C), and salt absorption coefficient (1 to 100 m-1). Our study indicates that (1) the proposed overall heat transfer model reasonably predicts the salt convective and radiative heat transfer, (2) the radiative heat transfer is more important for laminar flows than transitional and turbulent flows, (3) the radiative heat transfer is more important in tubes of larger inner diameter, (4) the salt temperature affects the radiative heat transfer significantly while the temperature difference between the salt and wall has a slightly smaller effect for the range investigated (ΔT = 5°C to 100°C), and (5) the salt absorption coefficient significantly affects the salt radiative heat transfer.