ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Charles W. Forsberg
Nuclear Technology | Volume 206 | Number 11 | November 2020 | Pages 1659-1685
Technical Paper | doi.org/10.1080/00295450.2020.1743628
Articles are hosted by Taylor and Francis Online.
Energy markets are changing because of (1) the addition of nondispatchable wind and solar electric generating capacity and (2) the goal of a low-carbon energy system. The large-scale addition of wind and solar photovoltaics results in low wholesale electricity prices at times of high wind and solar output and high prices at times of low wind and solar input. The goal of a low-carbon energy system requires a replacement energy production system with assured peak energy production capacity.
To minimize costs, capital-intensive nuclear reactors should operate at base load. To maximize revenue (minimize sales at times of low prices and maximize sales at times of high prices), the power cycle should provide variable heat and electricity. This requires the power cycle to (1) include heat storage that enables peak heat and electricity output that may be several times base-load reactor output and (2) provide assured peak power production. Assured peak power production requires the capability to efficiently burn low-carbon fuels such as hydrogen and biofuels. Alternatively, nuclear systems with base-load reactors can be built to produce peak electricity and storable hydrogen for industry, biofuels, and other markets. All power reactors with appropriate system designs can meet these requirements.
The lowest-cost technologies for heat storage, assured peak power production, and hydrogen production require high-temperature heat. This economically favors salt-cooled reactors with the average temperature of delivered heat of about 650°C versus heat delivered at lower average temperatures from other reactors such as light water reactors: 280°C, sodium-cooled reactors: 500°C, and high-temperature helium-cooled reactors: 550°C. Salt-cooled reactors include (1) Fluoride-salt-cooled High-temperature Reactors (FHRs) with solid fuel and clean salt, (2) Molten Salt Reactors (MSRs) with fuel dissolved in the salt, and (3) fusion reactors with salt blankets. Future energy markets, nuclear systems (heat storage, assured peak energy production capacity, and hydrogen production) designed for such markets and the power cycle technologies that economically favor salt reactors are described.