ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Let it RAIN: A new approach to radiation communication
Despite its significant benefits, the public perception of radiation is generally negative due to its inherent nature: it is ubiquitous yet cannot be seen, heard, smelled, or touched—as if it were a ghost roaming around uncensored. The public is frightened of this seemingly creepy phantom they cannot detect with their senses. This unfounded fear has hampered the progress of the nuclear industry and radiation professions.
Bahman Zohuri, Stephen Lam, Charles Forsberg
Nuclear Technology | Volume 206 | Number 11 | November 2020 | Pages 1642-1658
Critical Review | doi.org/10.1080/00295450.2019.1681222
Articles are hosted by Taylor and Francis Online.
The fluoride-salt-cooled high-temperature reactor and some proposed fusion reactors use clean fluoride salts as reactor coolants that have melting points above 450°C and generate tritium. Tritium diffuses through most hot metals, thus methods to capture tritium and prevent its release to the environment are required. Molten salt reactors (MSRs) use fluoride or chloride salts with high melting points where the fuel is dissolved in the coolant. MSR systems produce volatile fission products (Xe, Kr, etc.) and some produce significant tritium. We examine the use of heat exchangers with multiple heat pipes for salt-cooled fission and fusion systems that serve four functions: (1) transfer heat from primary coolant to power cycle, secondary loop, or environment; (2) provide the safety function of a secondary loop by isolating the reactor salt coolant from the high-pressure power cycle; (3) stop heat transfer if the reactor coolant approaches its freezing point to prevent blockage of the primary loop; and (4) block tritium escape to the environment with recovery of the tritium. Each of these capabilities in some form has been demonstrated in a heat pipe system, but not all the functions have been demonstrated in a single system because there has been no need for all of these capabilities in a single system. We review the status of heat pipe technology and the limits of heat pipe technology as the starting points for decisions on the development of such heat pipe systems.