ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Bahman Zohuri, Stephen Lam, Charles Forsberg
Nuclear Technology | Volume 206 | Number 11 | November 2020 | Pages 1642-1658
Critical Review | doi.org/10.1080/00295450.2019.1681222
Articles are hosted by Taylor and Francis Online.
The fluoride-salt-cooled high-temperature reactor and some proposed fusion reactors use clean fluoride salts as reactor coolants that have melting points above 450°C and generate tritium. Tritium diffuses through most hot metals, thus methods to capture tritium and prevent its release to the environment are required. Molten salt reactors (MSRs) use fluoride or chloride salts with high melting points where the fuel is dissolved in the coolant. MSR systems produce volatile fission products (Xe, Kr, etc.) and some produce significant tritium. We examine the use of heat exchangers with multiple heat pipes for salt-cooled fission and fusion systems that serve four functions: (1) transfer heat from primary coolant to power cycle, secondary loop, or environment; (2) provide the safety function of a secondary loop by isolating the reactor salt coolant from the high-pressure power cycle; (3) stop heat transfer if the reactor coolant approaches its freezing point to prevent blockage of the primary loop; and (4) block tritium escape to the environment with recovery of the tritium. Each of these capabilities in some form has been demonstrated in a heat pipe system, but not all the functions have been demonstrated in a single system because there has been no need for all of these capabilities in a single system. We review the status of heat pipe technology and the limits of heat pipe technology as the starting points for decisions on the development of such heat pipe systems.