ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Prince Amoah, Edward Shitsi, Emmanuel Ampomah-Amoako, Henry Cecil Odoi
Nuclear Technology | Volume 206 | Number 10 | October 2020 | Pages 1615-1624
Technical Note | doi.org/10.1080/00295450.2020.1713681
Articles are hosted by Taylor and Francis Online.
Following the core conversion of Ghana’s miniature neutron source reactor (MNSR) from highly enriched uranium (HEU) to low-enriched uranium (LEU), there has been a change in the fuel composition, fuel, clad, and other reactor core parameters. Since the allowable core power in a nuclear reactor is limited by thermal considerations, this study presents transient analysis of the LEU core of Ghana Research Reactor−1 (GHARR-1). The transient study has been carried out using the Monte Carlo N-Particle code version 5 (MCNP5) and the Program for the Analysis of Reactor Transients (PARET)/Argonne National Laboratory (ANL) computational tools. The behavior of the reactor core at normal and accident conditions of large reactivity insertions was studied. Transient results obtained for accidental large reactivity insertions of 6.71 mk indicated that boiling might occur in the coolant because under such large reactivity insertions, the coolant temperature was close to the saturation temperature of the coolant. The results show that boiling will not occur in the core for other reactivity insertions of 1.94, 2.1, 2.99, 3.87, and 4.0 mk considering that the outlet coolant temperatures obtained are far below the saturation temperature of 100°C at a pressure of 1 atm. The clad and fuel meat temperatures obtained for all the reactivity insertions are far below the melting points of Zircaloy-4 clad material and UO2 fuel. The results of the power profiles obtained show that the reactor is inherently safe even under large reactivity insertion conditions. The results obtained were found to agree well with the available experimental results. Comparison of the results of the LEU core with the previous HEU core has shown that temperature rise in the LEU core is lower than that in the HEU core under reactor transient conditions.