ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Swaminathan Vaidyanathan
Nuclear Technology | Volume 206 | Number 10 | October 2020 | Pages 1538-1552
Technical Paper | doi.org/10.1080/00295450.2019.1706377
Articles are hosted by Taylor and Francis Online.
A fuel rod design consisting of a bimetallic cladding tube of thorium metal bonded to a zirconium alloy and containing seed fuel in the interior space is proposed for thorium utilization in pressurized water reactors. The design mitigates the severe thermal penalty that arises in radial microheterogeneous designs when thorium is present as an oxide. The level of thorium loading has an important effect on the achievable discharge exposure as too high a loading results in a large reactivity penalty that is not compensated by rapid enough 233U breeding. In the bimetallic cladding design, the level of thorium loading could be adjusted by varying the thorium metal thickness, and analyses are presented to evaluate optimal levels of thorium loading. Results of cases for higher levels of initial seed loading are presented with a view to extending exposure and reducing the number of discharged assemblies. Liquid metal bonding the seed fuel–cladding gap is preferable as it reduces the seed fuel temperature and at the same time provides more room for fuel swelling. Helium bonding the gap is also possible with a seed fuel modified by an inert matrix. Both approaches need data for fuel thermal modeling, swelling, and fission gas release at high burnup not currently available.